Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Social networks form a major parts of people’s lives, and individuals often make important life decisions based on information that spreads through these networks. For this reason, it is important to know whether individuals from different protected groups have equal access to information flowing through a network. In this article, we define the Information Unfairness (IUF) metric, which quantifies inequality in access to information across protected groups. We then introduce MinIUF , an algorithm for reducing inequalities in information flow by adding edges to the network. Finally, we provide an in-depth analysis of information flow with respect to an attribute of interest, such as gender, across different types of networks to evaluate whether the structure of these networks allows groups to equally access information flowing in the network. Moreover, we investigate the causes of unfairness in such networks and how it can be improved.more » « less
-
The dynamics of charitable donor co-attendance networks can help fundraisers assess and improve fundraising outcomes. To improve understanding of donor-giving patterns, this study examines a large, multi-year network describing the co-attendance of donors at charitable fundraising events. We analyze the dynamics of co-attendance networks based on their topological structure, shift in node characteristics, and various network properties. Among other results, we observe a 76% increase in giving value for donors that showed increased centrality rank over nonoverlapped snapshots. In the data we examined, 19.14% of the donors whose giving increased and 16.24% of donors that remained in the same giving range exhibited increased co-attendance with high-capacity donors, whereas none of the donors that shifted to a lower class exhibited increased co-attendance with high-capacity donors over the periods, potentially illustrating a positive peer effect on donors. Some similarity was also observed in the giving characteristics of donors who co-attend events, with a 0.211 assortativity coefficient for the giving class of donors as a characteristic of donors when considering network dynamics using a rolling window size of 3 years. This is followed by analyzing the group-level similarities that reveal an interlinked clique of communities with diverse sizes. Our results show that large communities have a higher fraction of wealthy donors.more » « less
-
Recommendation systems have been used in many domains, and in recent years, ethical problems associated with such systems have gained serious attention. The problem of unfairness in friendship or link recommendation systems in social networks has begun attracting attention, as such unfairness can cause problems like segmentation and echo chambers. One challenge in this problem is that there are many fairness metrics for networks, and existing methods only consider the improvement of a single specific fairness indicator. In this work, we model the fair link prediction problem as a multi-armed bandit problem. We propose FairLink, a multi-armed bandit based framework that predicts new edges that are both accurate and well-behaved with respect to a fairness property of choice. This method allows the user to specify the desired fairness metric. Experiments on five real-world datasets show that FairLink can achieve a significant fairness improvement as compared to a standard recommendation algorithm, with only a small reduction in accuracy.more » « less
-
In the early stages of a pandemic, epidemiological knowledge of the disease is limited and no vaccination is available. This poses the problem of determining an Early Mitigation Strategy. Previous studies have tackled this problem through finding globally influential nodes that contribute the most to the spread. These methods are often not practical due to their assumptions that (1) accessing the full contact social network is possible; (2) there is an unlimited budget for the mitigation strategy; (3) healthy individuals can be isolated for indefinite amount of time, which in practice can have serious mental health and economic consequences. In this work, we study the problem of developing an early mitigation strategy from a community perspective and propose a dynamic Community-based Mitigation strategy, ComMit. The distinguishing features of ComMit are: (1) It is agnostic to the dynamics of the spread; (2) does not require prior knowledge of contact network; (3) it works within a limited budget; and (4) it enforces bursts of short-term restriction on small communities instead of long-term isolation of healthy individuals. ComMit relies on updated data from test-trace reports and its strategy evolves over time. We have tested ComMit on several real-world social networks. The results of our experiments show that, within a small budget, ComMit can reduce the peak of infection by 73% and shorten the duration of infection by 90%, even for spreads that would reach a steady state of non-zero infections otherwise (e.g., SIS contagion model).more » « less
An official website of the United States government
